PIASy controls ubiquitination-dependent proteasomal degradation of Ets-1.

نویسندگان

  • Tamotsu Nishida
  • Motoko Terashima
  • Kiyoko Fukami
  • Yoshiji Yamada
چکیده

The ETS transcription factor Ets-1 (E26 transformation-specific-1) plays a critical role in many physiological processes including angiogenesis, haematopoietic development and tumour progression. Its activity can be regulated by post-translational modifications, such as phosphorylation. Recently, we showed that Ets-1 is a target for SUMO (small ubiquitin-like modifier) modification and that PIASy [protein inhibitor of activated STAT (signal transducer and activator of transcription) Y], a specific SUMO-E3 ligase for Ets-1, represses Ets-1-dependent transcription. In the present study, we demonstrated that Ets-1 is degraded by the proteasome and that overexpression of PIASy increased the stability of endogenous and ectopically expressed Ets-1 protein by preventing proteasomal degradation. Moreover, knockdown of the endogenous PIASy expression by RNA interference reduced the protein level of endogenous Ets-1. The proteasome inhibitor MG132 reversed this effect. Deletion analysis showed that the TAD (transcriptional activation domain), which has been identified as the interaction domain with PIASy, was also required for Ets-1 ubiquitination and proteasomal degradation. However, the Ets-1 stabilization by PIASy was not due to reduced ubiquitination of Ets-1. Our results suggested that PIASy controls Ets-1 function, at least in part, by inhibiting Ets-1 protein turnover via the ubiquitin-proteasome system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-methyl-D-aspartate receptor- and metabotropic glutamate receptor-dependent long-term depression are differentially regulated by the ubiquitin-proteasome system.

Long-term depression (LTD) in CA1 pyramidal neurons can be induced by activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs), both of which elicit changes in synaptic efficacy through alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) endocytosis. To address the role of the ubiquitin-proteasome system in regulating AMPAR en...

متن کامل

Insulin Receptor Tyrosine Kinase Substrate Enhances Low Levels of MDM2-Mediated p53 Ubiquitination

The tumor suppressor p53 controls multiple cellular functions including DNA repair, cell cycle arrest and apoptosis. MDM2-mediated p53 ubiquitination affects both degradation and cytoplasmic localization of p53. Several cofactors are known to modulate MDM2-mediated p53 ubiquitination and proteasomal degradation. Here we show that IRTKS, a novel IRSp53-like protein inhibited p53-induced apoptosi...

متن کامل

Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation.

The Arabidopsis thaliana RING-type E3 ligase KEEP ON GOING (KEG) is a negative regulator of abscisic acid (ABA) signaling. Seedlings homozygous for T-DNA insertions in KEG accumulate high levels of the ABA-responsive transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5). Here, we demonstrate that KEG E3 ligase activity is required for the regulation of ABI5 abundance. KEG ubiquitinates ABI5 in...

متن کامل

12-O-tetradecanoylphorbol-1,3-acetate-induced degradation of protein kinase B via ubiquitin-proteasomal pathway depends on its Ser473 phosphorylation in gastric cancer cells.

TPA (12-O-tetradecanoylphorbol-1, 3-acetate) can induce cell apoptosis and cause PKB (protein kinase B) degradation correlated with its phosphorylation in gastric cancer cells. We investigated whether the ubiquitin-proteasomal pathway is involved in TPA-induced PKB degradation. The results showed that TPA could induce PKB ubiquitination by inhibiting its phosphorylation at the serine 473 site. ...

متن کامل

FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation.

Vacuolar protein-sorting 34 (Vps34), the catalytic subunit in the class III PtdIns3 (phosphatidylinositol 3) kinase complexes, mediates the production of PtdIns3P, a key intracellular lipid involved in regulating autophagy and receptor degradation. However, the signal transduction pathways by which extracellular signals regulate Vps34 complexes and the downstream cellular mechanisms are not wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 405 3  شماره 

صفحات  -

تاریخ انتشار 2007